Neuroeboluzio Informazioaren Ustiapena: Iragana Aztertu Etorkizun Eraginkor Baterako

Authors

  • Unai Garciarena University of the Basque Country (UPV/EHU)
  • Penousal Machado University of Coimbra
  • Nuno Lourenço University of Coimbra
  • Alexander Mendiburu University of the Basque Country (UPV/EHU)
  • Roberto Santana University of the Basque Country (UPV/EHU)

DOI:

https://doi.org/10.26876/ikergazte.vi.03.10

Keywords:

Generative adversarial networks, Probabilistic graphical models, Neuroevolution

Abstract

Neuroevolutionary algorithms, using evolutionary techniques to optimize neural network structures, are computationally costly but widely applied due to their strong performance. Typically, the best-found structure is the only outcome of the algorithm, while valuable residual information from the search is overlooked. This paper proposes a method to extract and leverage this information to build a metamodel that enhances future neural architecture searches. By analyzing optimal generative adversarial network structures, a Bayesian network-based meta-model is proposed, which can improve search initialization, and overcome local optima in structural optimization.

Downloads

Published

2025-05-30

How to Cite

Garciarena, U., Machado, P., Lourenço, N., Mendiburu, A., & Santana, R. (2025). Neuroeboluzio Informazioaren Ustiapena: Iragana Aztertu Etorkizun Eraginkor Baterako. IkerGazte. Nazioarteko Ikerketa Euskaraz, 3, 85–92. https://doi.org/10.26876/ikergazte.vi.03.10