Pathophisiology of atherosclerosis: from endothelial dysfunction to plaque rupture
PDF (Euskara)

Keywords

atherosclerosis
atheroma plaque
stroke
cardiovascular disease

How to Cite

Jebari Benslaiman, S., Larrea Sebal, A., B.Uribe, K., Benito Vicente, A., Galicia García, U., San José Urteaga, A., & Martín, C. (2024). Pathophisiology of atherosclerosis: from endothelial dysfunction to plaque rupture. Osagaiz: Osasun-Zientzien Aldizkaria, 8(1), 119–132. https://doi.org/10.26876/osagaiz.1.2024.575

Abstract

Atherosclerosis, the main risk factor for cardiovascular disease, is initiated by endothelium activation and followed by a cascade of events such as accumulation of lipids, fibrous elements and calcification. These processes trigger atheroma plaque formation and activation of inflammatory pathways. These processes along with the resulting vessel narrowing could promote cardiovascular clinical complications. This review summarizes the different stages of atherosclerosis development, ranging from endothelial dysfunction to plaque rupture, along with current treatment of the disease.

https://doi.org/10.26876/osagaiz.1.2024.575
PDF (Euskara)

References

https://www.who.int/health-topics/cardiovascular-diseases.

Biswas I, A. Khan G. Endothelial Dysfunction in Cardiovascular Diseases. In: Fatima Shad K, Soheil Saeedi Saravi S, Luqman Bilgrami N, editors. Basic and Clinical Understanding of Microcirculation [Internet]. IntechOpen; 2020 [cited 2022 Jan 24]. Available from: https://www.intechopen.com/books/basic-and-clinical-understanding-of-microcirculation/endothelial-dysfunction-in-cardiovascular-diseases

Castro-Ferreira R, Cardoso R, Leite-Moreira A, Mansilha A. The Role of Endothelial Dysfunction and Inflammation in Chronic Venous Disease. Ann Vasc Surg. 2018 Jan;46:380-93.

Gimbrone MA, Garcia-Cardena G. Vascular endothelium, hemodynamics, and the pathobiology of atherosclerosis. Cardiovasc Pathol. 2013 Feb;22(1):9-15.

Aird WC. Phenotypic Heterogeneity of the Endothelium: I. Structure, Function, and Mechanisms. Circ Res. 2007 Feb 2;100(2):158-73.

Esper RJ, Nordaby RA, Vilariño JO, Paragano A, Cacharrón JL, Machado RA. Endothelial dysfunction: a comprehensive appraisal. Cardiovasc Diabetol. 2006;18.

Gimbrone MA, Garcia-Cardena G. Vascular endothelium, hemodynamics, and the pathobiology of atherosclerosis. Cardiovasc Pathol. 2013 Feb;22(1):9-15.

Gimbrone MA, García-Cardeña G. Vascular endothelium, hemodynamics, and the pathobiology of atherosclerosis. Cardiovasc Pathol Off J Soc Cardiovasc Pathol. 2013 Feb;22(1):9-15.

Stary HC, Blankenhorn DH, Chandler AB, Glagov S, Insull W, Richardson M, et al. A definition of the intima of human arteries and of its atherosclerosis-prone regions. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation. 1992 Jan;85(1):391-405.

Favero G, Paganelli C, Buffoli B, Rodella LF, Rezzani R. Endothelium and Its Alterations in Cardiovascular Diseases: Life Style Intervention. BioMed Res Int. 2014;2014:1-28.

Zhang X, Sessa WC, Fernández-Hernando C. Endothelial Transcytosis of Lipoproteins in Atherosclerosis. Front Cardiovasc Med. 2018 Sep 25;5:130.

Jang E, Robert J, Rohrer L, von Eckardstein A, Lee WL. Transendothelial transport of lipoproteins. Atherosclerosis. 2020 Dec;315:111-25.

Heinecke JW. Mechanisms of oxidative damage of low density lipoprotein in human atherosclerosis. Curr Opin Lipidol. 1997 Oct;8(5):268-74.

Steinbrecher UP, Zhang HF, Lougheed M. Role of oxidatively modified LDL in atherosclerosis. Free Radic Biol Med. 1990;9(2):155-68.

Pentikäinen MO, Oörni K, Ala-Korpela M, Kovanen PT. Modified LDL - trigger of atherosclerosis and inflammation in the arterial intima. J Intern Med. 2000 Mar;247(3):359-70.

Pober JS, Sessa WC. Evolving functions of endothelial cells in inflammation. Nat Rev Immunol. 2007 Oct;7(10):803-15.

Liao JK. Linking endothelial dysfunction with endothelial cell activation. J Clin Invest. 2013 Feb;123(2):540-1.

Yu XH, Zheng XL, Tang CK. Nuclear Factor-κB Activation as a Pathological Mechanism of Lipid Metabolism and Atherosclerosis. In: Advances in Clinical Chemistry [Internet]. Elsevier; 2015 [cited 2022 Jan 25]. p. 1-30. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0065242315000220

Ley K, Laudanna C, Cybulsky MI, Nourshargh S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol. 2007 Sep;7(9):678-89.

Lin J, Kakkar V, Lu X. Impact of MCP-1 in atherosclerosis. Curr Pharm Des. 2014;20(28):4580-8.

Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018 Sep;233(9):6425-40.

Moore KJ, Freeman MW. Scavenger receptors in atherosclerosis: beyond lipid uptake. Arterioscler Thromb Vasc Biol. 2006 Aug;26(8):1702-11.

Bobryshev YV. Monocyte recruitment and foam cell formation in atherosclerosis. Micron Oxf Engl 1993. 2006;37(3):208-22.

Chistiakov DA, Bobryshev YV, Orekhov AN. Macrophage-mediated cholesterol handling in atherosclerosis. J Cell Mol Med. 2016 Jan;20(1):17-28.

Maitra U, Parks JS, Li L. An innate immunity signaling process suppresses macrophage ABCA1 expression through IRAK-1-mediated downregulation of retinoic acid receptor alpha and NFATc2. Mol Cell Biol. 2009 Nov;29(22):5989-97.

Peled M, Fisher EA. Dynamic Aspects of Macrophage Polarization during Atherosclerosis Progression and Regression. Front Immunol. 2014;5:579.

Nasiri M, Janoudi A, Vanderberg A, Frame M, Flegler C, Flegler S, et al. Role of cholesterol crystals in atherosclerosis is unmasked by altering tissue preparation methods: Ethanol Dissolves Cholesterol Crystals in Plaques. Microsc Res Tech. 2015 Nov;78(11):969-74.

Choi HY, Rahmani M, Wong BW, Allahverdian S, McManus BM, Pickering JG, et al. ATP-binding cassette transporter A1 expression and apolipoprotein A-I binding are impaired in intima-type arterial smooth muscle cells. Circulation. 2009 Jun 30;119(25):3223-31.

Lusis AJ. Atherosclerosis. Nature. 2000 Sep;407(6801):233-41.

Chamié D, Wang Z, Bezerra H, Rollins AM, Costa MA. Optical Coherence Tomography and Fibrous Cap Characterization. Curr Cardiovasc Imaging Rep. 2011 Aug;4(4):276-83.

Louis SF, Zahradka P. Vascular smooth muscle cell motility: From migration to invasion. Exp Clin Cardiol. 2010;15(4):e75-85.

Anlamlert W, Lenbury Y, Bell J. Modeling fibrous cap formation in atherosclerotic plaque development: stability and oscillatory behavior. Adv Differ Equ. 2017 Dec;2017(1):195.

Visscher M, Moerman AM, Burgers PC, Van Beusekom HMM, Luider TM, Verhagen HJM, et al. Data Processing Pipeline for Lipid Profiling of Carotid Atherosclerotic Plaque with Mass Spectrometry Imaging. J Am Soc Mass Spectrom. 2019 Sep 1;30(9):1790-800.

Cabrera JTO, Makino A. Efferocytosis of vascular cells in cardiovascular disease. Pharmacol Ther. 2021 Jun;107919.

Coornaert I, Hofmans S, Devisscher L, Augustyns K, Van Der Veken P, De Meyer GRY, et al. Novel drug discovery strategies for atherosclerosis that target necrosis and necroptosis. Expert Opin Drug Discov. 2018 Jun 3;13(6):477-88.

Nidorf SM, Fiolet A, Abela GS. Viewing atherosclerosis through a crystal lens: How the evolving structure of cholesterol crystals in atherosclerotic plaque alters its stability. J Clin Lipidol. 2020 Sep;14(5):619-30.

Martinet W, Schrijvers DM, De Meyer GRY. Necrotic cell death in atherosclerosis. Basic Res Cardiol. 2011 Sep;106(5):749-60.

Shi X, Gao J, Lv Q, Cai H, Wang F, Ye R, et al. Calcification in Atherosclerotic Plaque Vulnerability: Friend or Foe? Front Physiol. 2020 Feb 5;11:56.

Nakahara T, Dweck MR, Narula N, Pisapia D, Narula J, Strauss HW. Coronary Artery Calcification: From Mechanism to Molecular Imaging. JACC Cardiovasc Imaging. 2017 May;10(5):582-93.

Slager C, Wentzel J, Gijsen F, Schuurbiers J, van der Wal A, van der Steen A, et al. The role of shear stress in the generation of rupture-prone vulnerable plaques. Nat Clin Pract Cardiovasc Med. 2005 Aug;2(8):401-7.

Stefanadis C, Antoniou C, Tsiachris D, Pietri P. Coronary Atherosclerotic Vulnerable Plaque: Current Perspectives. J Am Heart Assoc [Internet]. 2017 Mar 15 [cited 2022 Jan 26];6(3). Available from: https://www.ahajournals.org/doi/10.1161/JAHA.117.005543

Badimon L, Padró T, Vilahur G. Atherosclerosis, platelets and thrombosis in acute ischaemic heart disease. Eur Heart J Acute Cardiovasc Care. 2012 Apr;1(1):60-74.

Libby P. Inflammation in atherosclerosis. Nature. 2002 Dec 19;420(6917):868-74.

Kovanen PT, Kaartinen M, Paavonen T. Infiltrates of activated mast cells at the site of coronary atheromatous erosion or rupture in myocardial infarction. Circulation. 1995 Sep 1;92(5):1084-8.

Sarén P, Welgus HG, Kovanen PT. TNF-alpha and IL-1beta selectively induce expression of 92-kDa gelatinase by human macrophages. J Immunol Baltim Md 1950. 1996 Nov 1;157(9):4159-65.

Osaki T, Ichinose A. [Current views of activating and regulatory mechanisms of blood coagulation]. Nihon Rinsho Jpn J Clin Med. 2014 Jul;72(7):1206-11.

Thanvi B, Robinson T. Complete occlusion of extracranial internal carotid artery: clinical features, pathophysiology, diagnosis and management. Postgrad Med J. 2007 Feb 1;83(976):95-9.

Lyaker MR, Tulman DB, Dimitrova GT, Pin RH, Papadimos TJ. Arterial embolism. Int J Crit Illn Inj Sci. 2013 Jan;3(1):77-87.

Stancu C, Sima A. Statins: mechanism of action and effects. J Cell Mol Med. 2001;5(4):378-87.

DaCosta M, Tadi P, Surowiec SM. Carotid Endarterectomy. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 [cited 2023 May 30]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK470582/

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2024 Osagaiz: osasun-zientzien aldizkaria